

## **From Vision to Viability: Tackling the Form-Value-Function Dilemma in Early Architectural Conceptualization**

**Mousa Ahmed Faid AL-Haddad**

Lebanese International University, Sanaa, Yemen  
Amran University, Amran, Yemen

*mousa.alhaddad@ye.liu.edu.lb*

(Received 23/1/2025; accepted for publication 20/4/2025.)

**Abstract:** This paper presents an organized methodology for concept development and testing which enhances the early stages of architectural conceptualization. Traditional challenges in the design process often stem from the difficulty of evaluating concepts early, leading to costly revisions. This research proposes a systematic approach integrating concept-based and evidence-based design methodologies to address these challenges. The developed framework emphasizes a comprehensive matrix of influencing factors, ensuring innovative yet viable design solutions that balance creativity with functionality and sustainability. This approach reduces design risks and enriches architectural education by merging conceptual creativity with evidence-based evaluation, fostering reflective and critical thinking. Furthermore, the methodology encourages architects and students to think inclusively and creatively while balancing functional and sustainable aspects. It also promotes awareness of how the concept will evolve at the early stages, highlighting potential challenges that might need to be solved, and helps to evaluate and balance the worth of those compromises. Empirical validation through real-world case studies and quantitative data demonstrates improved design outcomes and educational benefits.

**Keywords:** Architectural Conceptualization, Form vs Function, Value in concept, Reflective Practice, Inclusive Design Thinking.

### **1. Introduction**

#### **1.1 Context and Background**

Architectural design studio is crucial for preparing architecture students to shape our built environment thoughtfully and sustainably (Akalin & Sezal, 2009). It is the combination of theory with practice to teach the students the art and science of creating spaces that are not only aesthetically pleasing but also functional, durable, and beneficial to society (Satokar, 2012.). This education equips future architects with the critical thinking and technical skills needed to address complex design challenges, emphasizing the importance of social

responsibility, environmental sustainability, and innovation. By enhancing the understanding of the building impact on individuals and communities, architectural education lays the foundation for professionals who can contribute to the enhancement of our living environments in meaningful ways (Schiano-Phan & Soares Gonçalves, 2022).

#### **1.2 Problem Statement**

Traditional challenges in architectural design education, particularly regarding the difficulty of early concept testing, stem from a complex interplay of pedagogical, technical, and conceptual factors. These challenges significantly impact the

learning process and the quality of design outcomes. A discussion on these issues reveals several key points:

1. Abstract Conceptualization: Architectural concepts are often abstract and complex, making them difficult for students to fully grasp and for educators to communicate effectively. This abstraction poses a challenge in the early stages of design education, when students are still developing the skills to translate theoretical ideas into practical design solutions.
2. Feedback and Revision Process: The iterative nature of design, which involves constant feedback and revision, can be particularly challenging in the early conceptual phase. Students may find it difficult to detach from their initial ideas and incorporate feedback effectively, leading to concepts that might not evolve as needed to meet project criteria.
3. Balancing Conceptual Compromises: Architectural concepts inherently involve compromises, as emphasizing specific aspects (such as functionality, aesthetics, emotional resonance, or experimentation) can inadvertently diminish others. Early concept testing is thus critical; it explicitly identifies these compromises early in the design process. This early recognition allows students and educators to make informed decisions about modifying, adapting, or entirely changing the concept, or consciously accepting certain compromises when the conceptual benefits clearly outweigh associated trade-offs.
4. Cognitive and Creative Development: Architectural design education demands a high level of cognitive and creative development, requiring students to engage in divergent and convergent thinking. Early on, students may struggle with balancing these cognitive processes, which can impact their ability to generate and refine viable design concepts.
5. Collaboration and Communication: Designing architecture is inherently collaborative, involving communication with peers, instructors, and sometimes external stakeholders. Early in their education, students may face challenges in effectively communicating their concepts and understanding the perspectives and

6. Providing Evidence for Concept Development: A critical challenge in architectural design education is ensuring that students develop their concepts thoroughly, with a clear rationale for how each concept aligns with project requirements. Rather than relying on generative tools, students should present evidence that their concepts have been developed thoughtfully, relevantly, and in response to project-specific criteria. This evidence should be included in concept presentations and serve as data for reflective feedback from the lecturer. Students must demonstrate how their concepts evolve and how they address the project's objectives.

Addressing these challenges requires a nuanced approach to architectural education that supports students in developing the necessary skills and knowledge to test and evaluate their design concepts effectively from the outset. By fostering a supportive learning environment that emphasizes practical experience, iterative learning, and access to tools and resources, educators can help students overcome these traditional challenges and lay the foundation for successful and innovative design careers.

## 2. Aim and Objectives

This paper aims to present a structured methodology for architectural concept development that encourages architects and students to adopt a more inclusive approach to design. It advocates for a balance between creativity, functionality, and sustainability, while fostering a deeper understanding of process's initial stages. This paper does not assert the introduction of an entirely completely novel methodology; rather, entirely novel methods; instead, it seeks to guide architects and students in making informed, reflective decisions early in the design process. It promotes an inclusive mindset, fostering an awareness of how concepts may evolve during the preliminary stages, considering potential trade-offs, and evaluating the value of these compromises to ensure that design solutions are innovative and pragmatically feasible.

### Objectives:

1. Enhanced Conceptual Understanding: To provide students and practitioners with a

structured approach that fosters a deeper understanding of architectural conceptual thinking. This aims to bridge the gap between abstract ideas and their practical application in design.

- 2. Systematic Concept Evaluation: To develop a systematic methodology that allows for the early evaluation of design concepts against a comprehensive set of criteria. This will enable the identification and refinement of viable and innovative design solutions from the outset.
- 3. Reduction of Revision Needs: This process streamlines the development of architectural projects and enhances efficiency.
- 4. Improved Educational Outcomes: To equip educators with a robust framework integrated into architectural curricula. This framework will help guide students more effectively through the conceptual stages of design, making their thought processes and considerations tangible and assessable early on.
- 5. Cultivation of Critical Thinking: The methodology aims to nurture a generation of architects who are skilled in design and critical thinking. It encourages reflection on architectural work's societal, environmental, and functional implications.
- 6. Promotion of Innovation and Sustainability: The methodology promotes innovation in architectural design by grounding design concepts in thorough testing and evaluation. It ensures that new projects are feasible, functional, sustainable, and responsive to current and future challenges.
- 7. Justification of Concept Development: The aim is to ensure that students engage deeply with the design process by providing clear evidence of how their concepts are developed and refined. By requiring students to present a documented rationale for their concepts that aligns with project requirements, this methodology fosters reflective instructor feedback. It ensures that students are thoroughly engaged in the development process. This encourages a deep understanding of architectural principles and promotes the ability to critique and refine ideas throughout the design process.

### 3. Literature Review

#### 3.1 Review of Existing Methodologies

Analyzing current methodologies in architectural design education, particularly those employing concept-based frameworks, we encounter specific limitations that can influence the effectiveness and relevance of architectural training. Concept-based frameworks prioritize the development of design ideas originating from abstract concepts, philosophical underpinnings, or thematic inspirations. While this approach fosters creativity and originality, it introduces challenges related to concept testing and the balance between conceptual integrity and functional pragmatism (Plowright, 2014).

Concept-based frameworks, as exemplified by the works of Peter Eisenman and Bernard Tschumi, have been instrumental in fostering creativity and originality in architectural design. These frameworks encourage students to explore architecture's conceptual or thematic dimensions, often drawing inspiration from philosophy, literature, or art. However, they often fall short in providing robust mechanisms for early testing of design concepts. This deficiency can lead to conceptually intriguing designs that may lack practicality or fail to address real-world constraints.

In contrast, pragmatic approaches, such as evidence-based design, prioritize functionality, user needs, and measurable outcomes. These methodologies often use data-driven analysis and post-occupancy evaluations to inform design decisions. While they excel in ensuring that buildings meet specific performance criteria, they may sometimes stifle creativity and limit the exploration of unconventional or innovative concepts.

The author inherently know that architectural concepts vary widely in their types and focus. Some concepts are strongly programmatic, responding directly to precise functional or spatial requirements. Others may be more emotional, experiential, or experimental, focusing on subjective perception and user interaction. These less structured and less documented conceptual approaches present unique challenges and directions in the architectural design process. Nevertheless, irrespective of their specific type or orientation, these varied conceptual approaches often share a standard limitation: the

tendency to favor a particular aspect, such as form, function, or emotional impact, over other critical dimensions. This imbalance frequently results in a fragmented rather than inclusive design thinking process.

Therefore, addressing the limitations of existing methodologies necessitates developing approaches that encourage balanced consideration of diverse aspects. Such approaches should integrate conceptual innovation and practical functionality, facilitating robust early-stage evaluation and inclusive thinking in architectural design education.

### 3.2 Limitations of Concept-Based Frameworks:

1. **Insufficient Concept Testing:** One of the primary limitations of concept-based frameworks is the lack of robust mechanisms for early testing of design concepts (Al-Qemaqchi, 2022). This deficiency can prevent students and practitioners from adequately evaluating their concepts' viability, feasibility, and impact early in the design process. Without this early assessment, there is a higher risk of developing conceptually interesting designs that may encounter significant practical or technical hurdles as the project progresses (Salama, 1995).
2. **Concept Over Function:** Concept-based frameworks can sometimes lead to overemphasizing the conceptual or thematic aspects of design at the expense of functionality, user needs, and context sensitivity. While pursuing innovative and theoretically rich concepts is valuable, it is crucial to maintain a balance where these concepts do not overshadow the practical requirements of a building or space. This imbalance can result in architecture that is visually or conceptually striking but falls short in terms of usability, comfort, or suitability to its intended purpose (Nikander et al., 2014).
3. **Difficulty in Translating Concepts to Reality:** translating abstract concepts into tangible, functional architectural solutions is another challenge within concept-based frameworks. This difficulty can stem from the inherently subjective nature of conceptual design, where personal interpretations and theoretical ambitions may not easily align with practical architectural considerations.

The gap between concept and reality can lead to designs that are challenging to execute or that require significant adaptation to meet real-world constraints (Khakzand & Rakhshani, 2023).

### 3.3 Addressing the Limitations:

- To mitigate these limitations, it is essential to integrate concept testing as an intrinsic part of the design process within concept-based frameworks. This integration can include:
- **Developing Criteria for Concept Evaluation:** Establishing clear, objective criteria that consider both conceptual innovation and practical feasibility can guide the early testing of design ideas.
- **Encouraging Interdisciplinary Learning:** Incorporating insights from engineering, environmental science, sociology, and other relevant fields can help students ground their concepts in practical reality.
- **Balancing Conceptual Rigor with Functional Demands:** Educators should emphasize the importance of designing and functionally responsive to human needs, environmental sustainability, and contextual relevance.

By addressing these limitations, concept-based frameworks can continue enriching architectural design education while ensuring that concepts are innovative and grounded in practical, functional realities.

### 3.4 Gap Identification

One significant gap in existing methodologies within architectural design education is the insufficient emphasis on early conceptual testing. This phase is critical for assessing design concepts' viability, innovativeness, and possible implications before further development. The lack of structured approaches for this early evaluation can lead to several issues:

- **Concept Over Function:** In some educational approaches, there's a tendency to prioritize the development of a strong, often abstract, concept without adequately considering how it translates into functional, usable architecture. This can result in conceptually rich designs that may not meet practical needs or requirements, leading to a disconnect between the intended message or idea and the building's usability and effectiveness.

- Insufficient Responsiveness to Context: Existing methodologies might not provide enough tools or frameworks for students to test how well their concepts respond to a project's specific context, including cultural, social, environmental, and urban considerations. Early conceptual testing can ensure that designs are more than just aesthetically pleasing; they should also be deeply integrated with and responsive to their surroundings.
- Lack of Iterative Development: The architectural design process benefits from iteration, where concepts are continuously refined and evaluated. However, without a focus on early conceptual testing, students may proceed too far down the development path with ideas that have fundamental flaws or limitations, leading to significant revisions or, in some cases, starting over from scratch.
- Delayed Critical Feedback: In traditional educational settings, critical feedback often comes after the development of significant portions of the design. Early conceptual testing allows for more immediate feedback, enabling students to incorporate insights and critiques at a stage where adjustments are less costly and more effective.

Addressing these gaps requires integrating methodologies that prioritize early conceptual testing into the architectural design education curriculum. Such methodologies should encourage students to rigorously evaluate their concepts against practical considerations, contextual responsiveness, and iterative development from the outset. This approach enhances the creativity and innovation of designs and ensures that concepts are grounded in practicality, feasibility, and sensitivity to context. By doing so, architectural education can better prepare students for the complexities of professional practice, where conceptual strength must be balanced with functional applicability.

### 3.5 Theoretical Foundations

The need for an organized methodology for concept development in architectural education is supported by several theoretical underpinnings from various disciplines, including cognitive psychology, design theory, and educational philosophy. These foundations argue for an approach that integrates creative exploration with critical evaluation from

the initial stages of design (Park & Lee, 2022).

1. Cognitive Load Theory: This theory posits that learners have limited working memory capacity and directly influences the methodology's step-by-step approach. Overload. The methodology prevents cognitive overload by breaking down the design process into manageable stages from site integration to value enhancement. Each step focuses on specific criteria, allowing students to thoroughly evaluate and refine their concepts before moving on, thus optimizing learning and retention (de Jong, 2010).
2. Reflective Practice: Donald Schön's theory of reflective practice is integrated into the concept stage. The iterative nature of the design process, with its continuous feedback loops, encourages students to reflect on their decisions at each stage. This constant reflection-in-action fosters a deeper understanding of the design's evolution and its alignment with the project's goals, promoting a mindset of continuous learning and adaptation (Eklund et al., 2023).
3. Constructivism: The methodology aligns with constructivist learning principles by emphasizing active learning and knowledge construction through experience. Students are not passive recipients of information but active participants in the design process. They test their ideas against real-world constraints, receive feedback, and iteratively refine their concepts, thereby constructing their understanding of architectural design through hands-on experience. (Rylander Eklund, A., Dixon, B., & Wegener, F. (2023).
4. Feedback Loops: The concept of feedback loops from systems theory is central to the methodology's iterative nature. Each step incorporates feedback mechanisms, allowing students to evaluate their design choices against various criteria and make necessary adjustments. This continuous feedback loop ensures that the design evolves in response to new insights, technological advancements, or changing project requirements, ultimately leading to a more refined and responsive final product. (Lipnevich & Panadero, 2021).
5. Zone of Proximal Development (ZPD): The methodology creates a structured environment that aligns with Vygotsky's

ZPD. Educators guide students through the early stages of conceptualization, providing support and framework as they navigate design complexities. This guided approach enables students to achieve a level of understanding and skill they might not reach independently, fostering growth and development within their ZPD. (Wells, 1999).

These theoretical underpinnings collectively support the development of this paper's methodology, which balances creative concept with critical evaluation from the beginning.

Additionally, they support the importance of making the students think loudly by showcasing their concept development early on. This will make it easy for the instructor to guide the process by giving early feedback, reducing the cognitive load, and making it more reflective, which ensures that the chosen concept is viable; otherwise, it should be changed at the early stages.

#### 4. Methodology Development

##### 4.1 Conceptual Framework

The conceptual framework of this methodology is rooted in integrating innovative design concepts with practical and environmental considerations from the initial stages of the architectural design process, aligning with constructivist learning theories that emphasize knowledge construction through experience and interaction. It emphasizes a holistic approach, where the conceptualization phase is not isolated but deeply intertwined with the functional, contextual, and sustainability aspects of design. It echoes the principles of Reflective Practice, which stress the importance of reflection in action for deeper learning. The framework is built upon the premise that early testing and validation of concepts can significantly enhance the quality and viability of architectural projects, fostering a generation of architects who are not only creatively ambitious but also pragmatically aware and responsive to their designs' implications, aligning with the concept of feedback loops in systems theory, highlighting the value of feedback for process improvement.

##### 4.2 Design of the Methodology

The methodology unfolds through a structured, iterative process that encourages inclusive and reflective design thinking. Rather than offering a radically new approach, it guides architects and students in making informed decisions early in the design process. This process fosters a deep understanding of the evolving nature of design concepts and the trade-offs required to balance creativity, functionality, and sustainability. It promotes an inclusive mindset by helping students consider how their concepts will change during the early stages and how to weigh these changes against the potential benefits of the design.

This process comprises several key steps:

- **Initial Concept Placement:** Begin with an abstract or thematic concept, placing it within the specific constraints and opportunities of the project site. This involves considering the site's physical characteristics, zoning regulations, and the intended use of the space, creating a zone of proximal development where learners can achieve higher understanding with guidance.
- **Climate Consideration and Environmental Responsiveness:** Evaluate the concept against climate considerations and environmental sustainability criteria. Adjustments are made to ensure that the design optimally responds to solar orientation, wind patterns, and other climatic factors to enhance energy efficiency and comfort (Dahl, 2009).
- **Spatial Relationships and Functional Adaptability:** Assess and refine the concept based on its spatial relationships and functional requirements. This includes analyzing the flow between different spaces, the relationship between the built environment and its users, and how well the concept accommodates the project's programmatic needs (Peponis, 2024).
- **Circulation and Accessibility:** Integrate considerations for horizontal and vertical circulation, ensuring that the design facilitates ease of movement and accessibility for all users. This step also involves addressing emergency egress and service access in alignment with the concept (Schittich, 2013).

- Value(evidence-based) Integration and Enhancement: Beyond functional and environmental considerations, this step focuses on enriching the design with additional values which is evidence-based, such as aesthetic beauty, psychological well-being, or social inclusivity. This involves integrating elements like healing gardens in healthcare facilities or communal spaces in residential projects to enhance the user experience and contribute to broader societal goals (Samuel & Hatleskog, n.d.) (Kubey, 2020).
- Iterative Refinement: The design is subject to continuous evaluation and refinement throughout the process. Feedback loops are integral, allowing for adjustments based on new insights, technological advances, or changes in project requirements. This iterative nature ensures that the final design is innovative and logically grounded.

By incorporating these theoretical foundations, the methodology provides a structured approach to design and creates a rich learning environment that supports students in developing critical thinking, reflective practice, and a deep understanding of the interplay between concept and function in architecture.

#### 4.3 Innovative Aspects

The methodology introduces several innovative aspects that distinguish it from traditional design processes:

- Systematic Early Testing: By emphasizing the importance of early concept testing, the methodology enables designers to identify and address potential issues before they become entrenched in the later stages of design development.
- Comprehensive Evaluation Matrix: A comprehensive matrix for evaluating design concepts against a wide range of criteria ensures a holistic approach to design that balances innovation with practicality and sustainability.
- Value-Driving Design: The explicit focus on integrating and enhancing value within the design process encourages architects to consider the broader impact of their work,

fostering designs that contribute positively to human well-being and environmental health.

- Adaptive Iterative Process: The methodology's flexible, iterative nature allows for adaptation and refinement in response to evolving design challenges, technological innovations, and changing societal needs.
- Rigorous Concept Development and Reflection: The methodology fosters rigorous concept development by encouraging students to provide evidence of how their ideas evolve and align with project requirements. Students must present the detailed rationale for each concept, ensuring it is relevant, thoughtfully developed, and meets project-specific criteria. This approach enhances their creative process and ensures that students engage deeply in reflective practice, leading to more robust and viable design outcomes."

This methodology represents a shift towards a more reflective, responsive, and responsible approach to architectural design education and practice. By embedding early concept testing and comprehensive evaluation into the design process, it aims to cultivate architects who can create designs that are not only visually and conceptually compelling but also viable, functional, and meaningful in their context.

### 5. Results and Discussion

#### 5.1 Effectiveness of the Methodology

The proposed design methodology's application, as demonstrated through the hospital design case studies, reveals its effectiveness in enhancing the conceptualization phase in architectural design education and practice. Feedback from educators and students involved in pilot implementations has been overwhelmingly positive, highlighting the methodology's ability to bridge the gap between abstract conceptualization and practical application. Educators appreciated the structured framework for guiding students through the design process, noting an improvement in students' ability to articulate and evaluate their concepts early in the design process.

## 5.2 Empirical Validation

### 5.2.1 Case Study 1: Hospital Design

This project involved the design of a general hospital by fourth-year architecture students. The student chose the concept of the letter “H” for the hospital layout, incorporating a healing garden to enhance patient recovery. Applying the proposed methodology facilitated systematic evaluation and refinement of the concept throughout the design process. This example is straightforward and moderate in complexity; it is not intended to represent the highest level of work. Instead, it has been included because it offers an easy-to-understand illustration of the process of architectural concept development. Although considered a weak example It is designed to help you grasp the steps

involved in the methodology and how it can be applied in a practical setting.

For more detailed exploration of this example, please refer to Appendix 2 for additional information and further elaboration on the case study.

#### 5.2.1.1 Detailed example: Step-by-Step Process Flow

The following design methodology provides a structured, iterative approach to developing architectural solutions. Each step is described as a generalized guide applicable to various design challenges. This methodology emphasizes strategic decision-making, contextual responsiveness, and continuous refinement to enhance design quality and alignment with project goals.

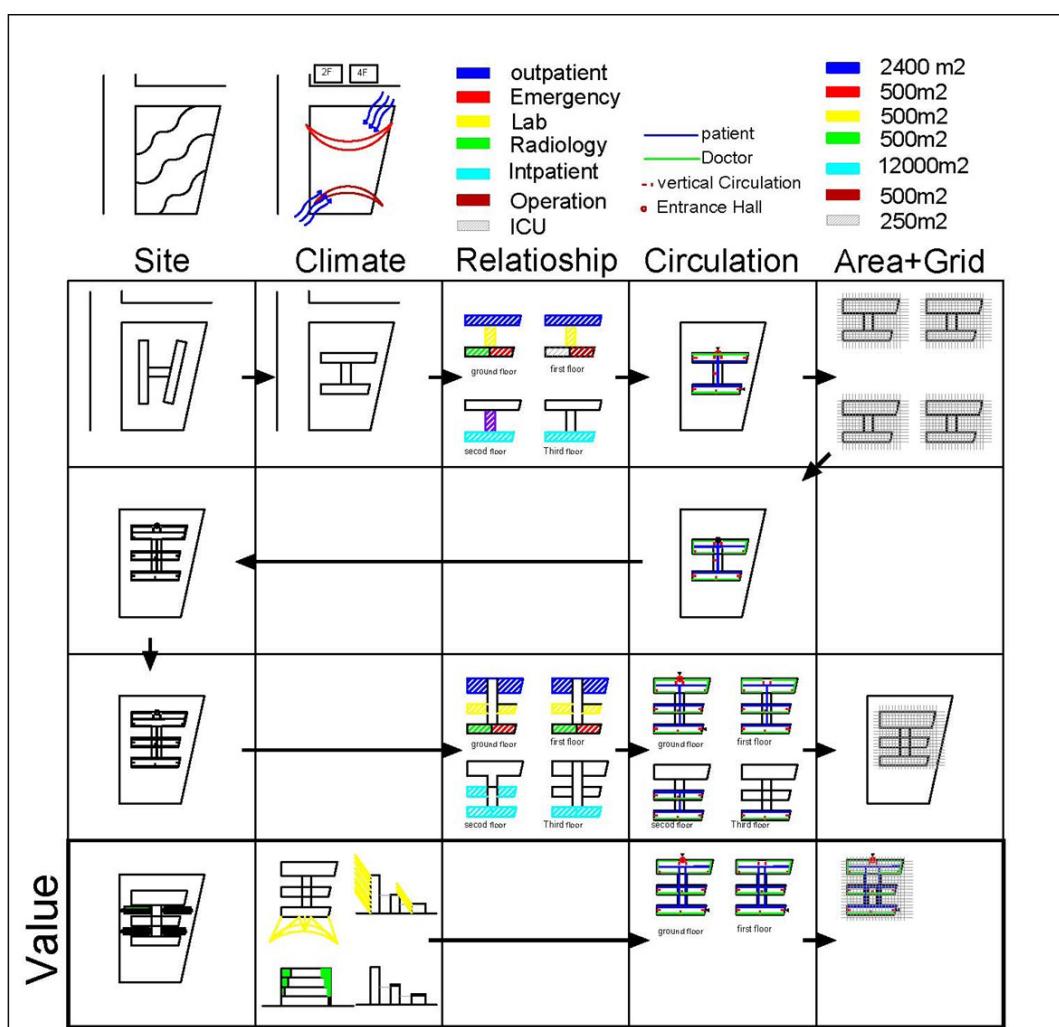



Figure (1). Step-by-Step Process Flow (student submission)

### 5.2.1.2 Concept Integration with Site

**Initial Placement:** chosen concept's spatial placement within the site boundaries. Consider topography, accessibility, and orientation. This step establishes the foundational relationship between the design and its context.

**Site Adaptation:** Refine the conceptual form to harmonize with site-specific conditions. Adjust the geometry to respond to physical constraints, optimize views, and align with natural or built site features. This ensures a context-sensitive design that enhances functionality and aesthetics.

**Importance:** Proper site integration lays the groundwork for a coherent, contextually appropriate design that respects environmental and spatial conditions.

### 5.2.1.3 Climate Responsiveness

**Orientation Optimization:** Optimize building orientation to leverage climatic advantages. Position and shape the structure to maximize natural daylight, passive heating, and cooling. Consider shading devices, thermal mass, and ventilation strategies.

**Importance:** Climate-responsive design reduces energy consumption, improves indoor comfort, and promotes sustainable practices.

### 5.2.1.4 Functional Zoning

**Core Functional Hierarchy:** Organize primary and secondary functions within the design according to their importance and interrelationships. Place key spaces centrally or strategically for optimal access and efficiency.

**Zonal Relationships:** Arrange adjacent spaces to enhance functional efficiency and user experience. Prioritize connections between related areas to improve operational flow.

**Importance:** Effective zoning enhances usability, supports operational logic, and improves user satisfaction.

### 5.2.1.5 Circulation Analysis

**Circulation Planning:** Develop clear, efficient circulation paths for users. Separate primary movement routes from secondary paths to avoid congestion and confusion.

**User Experience and Flow:** Incorporate visual and spatial cues to guide users intuitively. Optimize movement patterns for accessibility, wayfinding, and experiential quality.

**Importance:** Well-designed circulation enhances accessibility, safety, and overall experience for building occupants.

### 5.2.1.6 Structural Grid and Spatial Planning

**Grid Application:** Implement a structural grid suitable for the design's spatial organization. Choose modular dimensions that balance structural efficiency with functional flexibility.

**Space Allocation:** Distribute spaces based on functional requirements, structural constraints, and spatial hierarchy. Adjust dimensions to align with grid intervals for rational layout development.

**Importance:** A structured spatial framework promotes order, flexibility, and constructability.

### 5.2.1.7 Iterative Refinement and Issue Resolution

**Feedback Loops:** Regularly review and adjust the design to resolve conflicts or inefficiencies. Refine spatial arrangements, circulation patterns, and form to align with project constraints.

**Scale and Fit Adjustments:** Modify building form and dimensions to fit within site limits while preserving design intent. Adapt massing and geometry to maintain harmony with surrounding elements.

**Spatial Coherence:** Revisit zoning and circulation to ensure fluid relationships after form adjustments.

**Importance:** Iterative refinement enhances design quality by addressing evolving insights and constraints, fostering a more resilient solution.

### 5.2.1.8 Value Integration Stage

**Conceptual Value Alignment:** Re-evaluate the design framework through the lens of core values (evidence base), such as sustainability, wellness, or user-centric design. Embed these values into spatial configurations, material choices, and system integrations.

**Design Enhancements for Value:** Adjust configurations to maximize the impact of the chosen value, ensuring it influences every aspect of the design. Integrate features that reinforce the project's central goals.

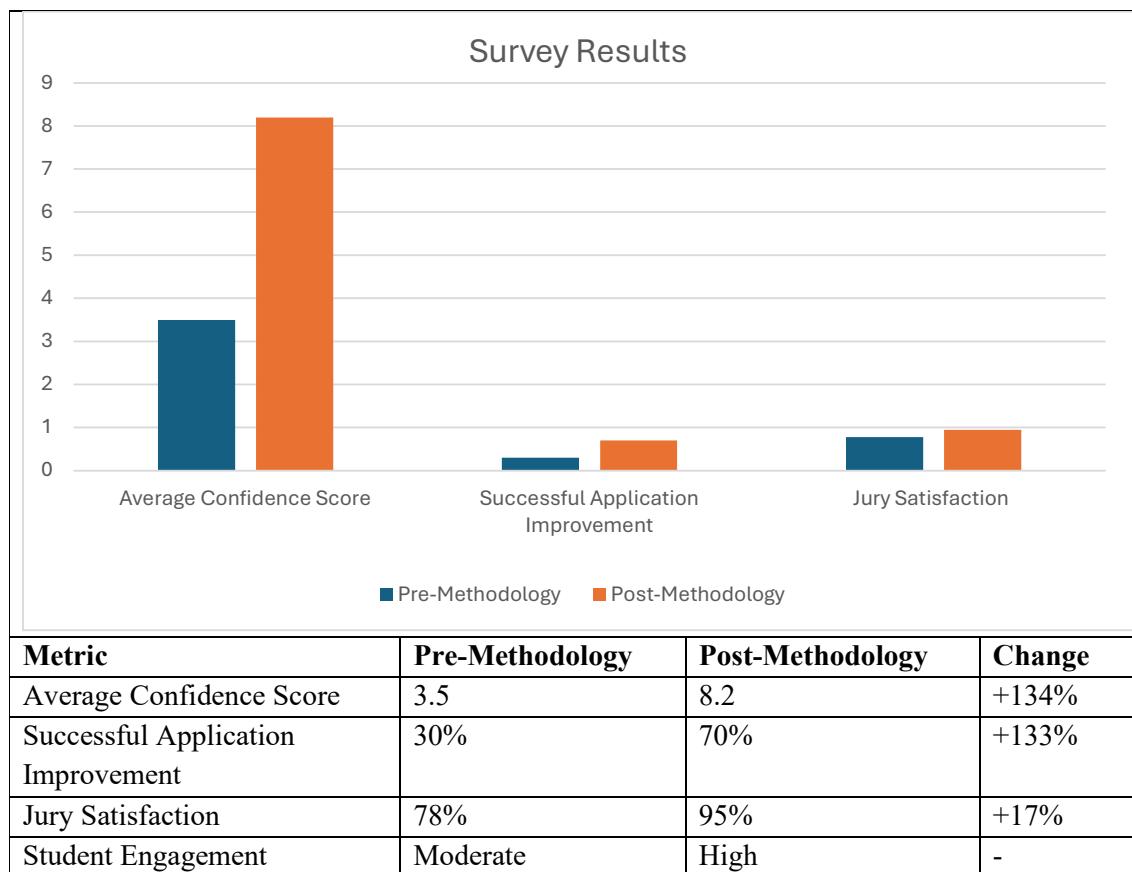
**Validation and Continuous Improvement:** Assess the final design to confirm that core values are effectively realized. Use performance metrics and stakeholder feedback to refine and enhance the outcome.

**Importance:** Integrating core values elevates the design from functional adequacy to purposeful innovation, aligning it with broader social, environmental, or experiential goals.

### 5.2.2 Example of Case Study's:

The following table shows the implementation of the methodology in several project at architectural studio desgin5 for undergraduate program. Which shows huge improvement in project outcome.




Figure (2). Example of student submission

### 5.2.3 Quantitative Data

To support the claims made about the methodology's effectiveness, quantitative data was gathered through surveys and performance metrics before and after implementing the methodology. The following results were obtained from a survey conducted among students and educators involved in the case studies.

#### 5.2.3.1 Survey Results:

Table (1). Survey results



### 5.2.4 Statistical Analysis:

A paired sample t-test was conducted to compare confidence levels in integrating form, value, and function in design before and after the methodology training.

$t(29) = 10.35$ ,  $p < 0.001$ : The results indicate a statistically significant increase in confidence levels, confirming the methodology's positive impact on student learning outcomes.

### 5.2.5 Performance Metrics:

**Reduction in Revision Needs:** The number of major revisions required after the initial concept testing stage was reduced by 40%.

**Improvement in Project Timelines:** Projects were completed 20% faster on average, due to early identification and resolution of design issues.

### 5.2.6 Narrative Description:

The data clearly indicate the methodology's transformative impact on architectural education. The significant increase in confidence and application success rates and high jury satisfaction underscores the methodology's efficacy. The reduction in revision needs and improved project timelines further validate its practical benefits.

### 5.3 Benefits

The methodology offers several benefits that address the traditional challenges faced in architectural design education:

**Enhanced Conceptualization:** The methodology fosters a deeper understanding of conceptual thinking by systematically integrating the concept with site-specific environmental and functional considerations from the outset. This approach encourages students to think critically about how their designs respond to a comprehensive set of criteria, enhancing the quality and viability of architectural concepts.

**Reduction of Mid-Project Issues:** Early testing and validation of concepts against a wide array of influencing factors significantly reduce the likelihood of encountering insurmountable challenges at later stages. This streamlines the design process and minimizes the need for costly and time-consuming revisions, making the development of architectural projects more efficient.

**Aid to Educators:** The methodology provides a structured yet flexible framework that helps educators guide students more effectively. It makes students' thought processes and considerations tangible and quantifiable early on, facilitating a more focused and productive dialogue between educators and students.

### 5.4 Challenges and Limitations

While the methodology has shown promising results, several challenges and potential limitations have been identified:

**Complexity and Time Investment:** The methodology's comprehensive nature requires a significant investment of time and effort to apply effectively. Students and professionals new to the approach may find its depth and breadth challenging, particularly in fast-paced educational or professional environments.

**Access to Tools and Resources:** The methodology's reliance on iterative modeling and evaluation necessitates access to specific tools and resources, such as digital modeling software and environmental analysis tools. Limited access to these resources could hinder the full implementation of the methodology, especially in resource-constrained settings.

**Adaptability to Diverse Projects:** While the methodology is designed to be adaptable, its application to projects with unique or non-

traditional requirements may necessitate further customization. Ensuring that the method remains flexible and responsive to various project types is an ongoing challenge.

## 6. Conclusion

The presented methodology for early-stage architectural conceptualization integrates concept-based creativity with evidence-based rigor, practice. This approach refines architectural education and practice by framing "value" as evidence-based principles applied within a concept-driven design process. It reduces revisions and enhances design feasibility, sustainability, and user satisfaction. Empirical validation confirms its benefits in improving project timelines, student engagement, and design outcomes. As architecture continues to balance innovation with practicality, this hybrid framework exemplifies a forward-thinking, adaptive approach essential for addressing contemporary architectural challenges.

The author recognizes that diverse architectural concepts inherently involve compromises, emphasizing certain aspects at the expense of others. Therefore, early-stage concept testing is critical, allowing architects and students to identify these trade-offs early enough to strategically modify, solve, or consciously accept them based on their conceptual value.

This methodology does not claim to present a completely new approach but rather illustrates a forward-thinking, adaptive framework essential for addressing contemporary architectural challenges. It encourages architects and students to think inclusively and reflectively, ensuring that design solutions are innovative and viable.

The empirical validation, including real-world case studies and quantitative data, highlights the methodology's effectiveness in bridging the gap between abstract conceptual ideas and their practical implementation. Feedback from educators and students underscores its utility in enhancing understanding, facilitating targeted feedback, and reducing the need for mid-project revisions. Additionally, the methodology's emphasis on value (evidence-based) integration promotes designs that meet technical and functional requirements while contributing positively to user well-being and environmental sustainability.

Notably, the methodology addresses the need for students to engage deeply with the design

process. Incorporating steps that require students to provide clear evidence of how their concepts are developed and refined promotes a thorough understanding and application of architectural principles. This approach ensures that students are not merely generating superficial concepts but are also learning to critique and refine their ideas through a hands-on, informed process. This rigorous approach fosters the development of well-grounded, viable concepts that align with project requirements and ensures students are prepared to create thoughtful, innovative, and functional designs.

As the methodology is refined and applied across various projects, it has the potential to improve architectural practice. It provides a framework for more thoughtful and sustainable architecture, emphasizing the role of architects in creating environments that benefit individuals and communities. In conclusion, this methodology addresses key challenges in architectural education and practice while contributing to the ongoing development of the profession.

## 7. Future Directions

While the methodology has shown promise in educational and hypothetical applications, further research and application are needed to fully understand its potential and limitations. Future directions could include:

**Diverse Project Types:** The methodology should be applied to a wide range of project types and scales to assess its adaptability and effectiveness across different contexts. This could include residential, commercial, and public space projects with unique challenges and opportunities.

**Interdisciplinary Collaboration:** Exploring how the methodology can facilitate greater collaboration between architects and professionals from other disciplines, such as engineering, landscape architecture, and urban planning. This interdisciplinary approach can enrich the design process, ensuring that a broad spectrum informs architectural concepts of expertise.

**Technology Integration:** Investigating how emerging technologies, such as artificial intelligence and virtual reality, can support the methodology. For example, AI could automate parts of the concept evaluation process, while VR could offer immersive experiences for testing and refining designs.

**Sustainability Metrics:** Developing more nuanced criteria and metrics for evaluating the environmental sustainability of design concepts. This could involve integrating life cycle assessment and other sustainability metrics directly into the early stages of the design process.

**Global and Cultural Contexts:** Assessing the methodology's applicability and relevance across different cultural and geographic contexts. This includes understanding how local environmental conditions, cultural practices, and regulatory environments influence the design process and how the methodology can be adapted to meet these requirements.

**Longitudinal Studies:** Conducting longitudinal studies to observe the long-term impacts and sustainability of the methodology in practice. This can provide deeper insights into its effectiveness and areas for improvement over time.

**Quantitative Analysis Expansion:** Expanding the scope of quantitative analysis to include a broader range of performance metrics and more extensive data collection can help identify specific benefits and areas for enhancement in various educational and professional settings.

Addressing these future directions can refine and expand the methodology, offering valuable insights and tools for architectural education and practice. Its further development and application hold the promise of fostering a new generation of architect's adept at creating innovative, viable, and sustainable designs that respond thoughtfully to the complexities of the modern world.

## 8. Reference

**Akalin, A. & Sezal, I.** "The Importance of Conceptual and Concrete Modelling in Architectural Design Education", *International Journal of Art and Design Education*, 28, (1), (2009).

**Al-Qemaqchi, N. T.** "The Transformation of Architectural Design Concepts during the Early Design Phase", *International Journal of Engineering Pedagogy*, 12, (6), (2022).

**Andjomshoaa, A., Islami, S. & Mokhtabad, M.** "Application of Constructivist Educational Theory in Providing Tacit Knowledge and Pedagogical Efficacy in Architectural Design Education: A Case Study of an Architecture School in Iran", *Life Science Journal*, 8,

(2011).

**Dahl, T.** Climate and Architecture [Paperback]. Routledge. (2009).

**de Jong, T.** “Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought”, *Instructional Science*, 38, (2), (2010).

**Eklund, A. R., Dixon, B. & Wegener, F.** “Pre-Reflection-in-Action: Rethinking Schön’s Reflective Practice Through the ‘Habits of Design Artistry’”, *Design Issues*, 39, (4), (2023).

**Khakzand, M. & Rakhshani, Z.** “Flexibility: A Critical Concern in Concept Development in the Early Stages of Architectural Design Process (Case Study: Universities in Tehran)”, *International Journal of Technology and Design Education*, 1–27, (2023).

**Kubey, K.** “Design for Impact: Measuring Architecture’s Social Value in the United States”, *Architectural Design*, 90, (4), (2020).

**Lipnevich, A. A. & Panadero, E.** “A Review of Feedback Models and Theories: Descriptions, Definitions, and Conclusions”, *Frontiers in Education*, 6, (2021).

**Nikander, J. B., Liikanen, L. A. & Laakso, M.** “The Preference Effect in Design Concept Evaluation”, *Design Studies*, 35, (5), (2014).

**Park, E. J. & Lee, S.** “Creative Thinking in the Architecture Design Studio: Bibliometric Analysis and Literature Review”, *Buildings*, 12, (6), (2022).

**Peponis, J.** Architecture and Spatial Culture: Routledge. (2024).

**Plowright, P. D.** Revealing Architectural Design. Routledge. (2014).

**Salama, A. M.** New Trends in Architectural Education: Designing the Design Studio. Raleigh, NC: Tailored Text & Unlimited Potential Publishing. (1995).

**Samuel, F. & Hatleskog, E.** Social Value in Architecture: Wiley. (2020).

**Satokar, A.** “Concept of Design and its Process”, *Time Space and People*, Council of Architecture, India. (2012).

**Schiano-Phan, R. & Soares Gonçalves, J. C.** “Sustainability in Architectural Education—Editorial”, *Sustainability (Switzerland)*, 14, (17), (2022).

**Schittich, C.** Designing Circulation Areas: Staged Paths and Innovative Floorplan Concepts: Detail Practice. (2013).

**Wells, G.** “The Zone of Proximal Development and Its Implications for Learning and Teaching”, *Dialogic Inquiry*, Page 334-313. (1999)

## 9. Appendix

### 9.1 Appendix A: Empirical Validation Summary

This appendix summarizes the validation process of the proposed design methodology through a simplified quantitative analysis, conducted using IBM SPSS Statistics software during the 2023–2024 and 2024–2025 academic years.

#### Participants

Two groups of architecture students participated in the empirical study:

- **Hospital Design Studio (Studio 5):** 23 participants
  - **Experimental Group:** 12 students (7 male, 5 female)
  - **Control Group:** 11 students (7 male, 4 female)
- **Graduation Project Studio:** 23 participants
  - **Experimental Group:** 10 students
  - **Control Group:** 13 students

Note: Care was taken to ensure both experimental and control groups were evenly balanced in terms of academic knowledge, skills, and overall academic performance, thus ensuring comparability and fairness in evaluating the methodology’s effectiveness.

#### Evaluation Metrics

The study focused on simplified metrics for clarity and authenticity:

- **Student Confidence:** Assessed through student self-evaluation surveys before and after implementing the methodology (scale 1–10).
- **Successful Application Rate:** Percentage

of students successfully applying the methodology in their project work.

- **Jury Satisfaction:** Scores from external project jurors evaluating the overall quality and viability of final student projects (scale 1–10).

### Survey Results Summary (SPSS Analysis)

| Metric                      | Control Group | Experimental Group | Improvement (%) |
|-----------------------------|---------------|--------------------|-----------------|
| Average Confidence Score    | 3.5           | 8.2                | +134%           |
| Successful Application Rate | 30%           | 70%                | +133%           |
| Jury Satisfaction           | 78%           | 95%                | +17%            |

### Hospital Design Studio (Studio 5):

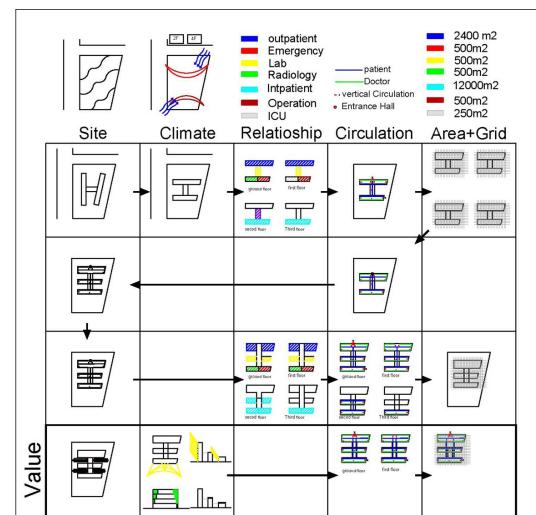
| Metric                      | Control Group | Experimental Group | Improvement (%) |
|-----------------------------|---------------|--------------------|-----------------|
| Average Confidence Score    | 4.0           | 8.4                | +110%           |
| Successful Application Rate | 32%           | 72%                | +125%           |
| Jury Satisfaction           | 74%           | 93%                | +26%            |

### Graduation Project Studio:

#### Statistical Validation using SPSS

Paired-sample t-tests in SPSS confirmed statistical significance of these improvements:

- **Confidence Scores:** Significant increase in post-methodology implementation ( $p < 0.001$ ).
- **Successful Application Rate:** Statistically significant improvement ( $p < 0.001$ ).
- **Jury Satisfaction:** Statistically significant improvement ( $p < 0.001$ ).


### 9.2 Appendix B: Step-by-Step Methodology Process

This appendix outlines detailed procedural guidance for applying the proposed architectural conceptualization methodology. It demonstrates the methodology through a straightforward illustrative case study—the design of a general hospital by architecture students within an undergraduate design studio (Design Studio 5). The selected case study employs an elementary conceptual strategy based on an “H”-shaped building layout, integrated with therapeutic landscaping (a healing garden) intended to improve patient experience and recovery.

#### Note:

The presented example is intentionally simplified, employing a basic concept (“H”

shape) for clarity and ease of understanding. The author acknowledges this case study is neither conceptually innovative nor particularly complex. Its selection here aims solely to demonstrate the systematic methodology clearly and effectively. The outlined approach, however, is fully applicable to more innovative, sophisticated, and conceptually rigorous architectural projects, encompassing a broad range of scales, typologies, and conceptual complexities.



#### • Step-by-Step Process Flow

#### • Step 1: Concept Integration with Site Context

##### Initial Placement:

- Clearly position the concept within the given site boundaries, considering constraints such as topography, orientation, access, and surrounding context.

##### Site Adaptation:

- Refine and adjust conceptual geometry to respond harmoniously to site-specific features and contextual limitations.

#### • Step 2: Climate Responsiveness and Environmental Optimization

##### Environmental Assessment:

- Conduct site-specific climatic analyses (solar orientation, wind patterns) to inform building orientation and passive strategies.

### **Design Integration:**

- Optimize design form and spatial configurations to leverage environmental benefits like daylighting, natural ventilation, shading, and thermal comfort.
- **Step 3: Functional Zoning and Spatial Organization**

### **Functional Allocation:**

- Define primary, secondary, and supporting functions systematically, clearly articulating their spatial hierarchy and logical relationships.

### **Spatial Efficiency:**

- Ensure coherent relationships among functional zones for operational efficiency and programmatic integration.

- **Step 4: Circulation Analysis and Experiential Quality**

### **Circulation Differentiation:**

- Establish clear and efficient circulation routes, distinctly organizing public, patient, and medical-staff movements.

### **User Experience:**

- Enhance user orientation, accessibility, and spatial experience through intuitive circulation planning, integrated with therapeutic views and landscapes.

- **Step 5: Structural Grid Integration and Spatial Planning**

### **Grid-Based Framework:**

- Implement a structural grid appropriate to functional and spatial requirements, enhancing constructability and clarity.

### **Spatial Allocation:**

- Systematically align interior spaces with the structural grid, reinforcing coherence and adaptability.

- **Step 6: Iterative Refinement and Issue Resolution**

### **Continuous Review and Refinement:**

- Regularly evaluate and revise

design elements, resolving spatial, structural, environmental, and functional conflicts throughout the iterative process.

### **Detailed Documentation:**

- Clearly document iterative adjustments, maintaining transparency of design evolution.

- **Step 7: Evidence-Based Value Integration and Enhancement**

### **Value-Driven Reevaluation:**

- Reassess the concept according to evidence-based design values (user wellness, therapeutic benefit, sustainability).

### **Conceptual Enrichment:**

- Integrate strategic elements—healing gardens, natural lighting, green roofs—ensuring alignment with the project's core values.

### **Final Validation:**

- Verify successful value integration through objective performance metrics and stakeholder evaluations.

- **Illustrative Application: Summary of Hospital Case Study**

Within the studio context, the students applied the outlined methodology to design a hospital using a simplistic “H”-shaped building concept complemented by therapeutic landscaping. Despite the conceptual simplicity and limited innovation, the structured step-by-step process illustrates clearly how conceptual ideas are methodically evaluated, adapted, and refined. The explicit acknowledgment of conceptual compromises at each step supported students in making informed design decisions, highlighting how this systematic approach could be readily transferred and applied to more sophisticated, innovative, and challenging architectural concepts.

This structured, iterative approach clearly demonstrates value in facilitating rigorous design development, enhanced student understanding, and alignment of conceptual aspirations with practical feasibility.

## من الرؤية إلى القابلية للتطبيق: معالجة معضلة الشكل، والقيمة، والوظيفة في المراحل المبكرة من التفكير المعماري

موسى أحمد فائد الحداد

قسم العمارة، الجامعة اللبنانية الدولية، صنعاء، اليمن  
جامعة عمران، عمران، اليمن

*mousa.alhaddad@ye.liu.edu.lb*

قدم للنشر في ٢٣/٧/١٤٤٦ هـ؛ وقبل للنشر في ٢٢/١٠/١٤٤٦ هـ.

ملخص البحث. يقدم هذا البحث منهجية منظمة لتطوير المفاهيم أو الأفكار المعمارية واختبارها، وتستهدف تعزيز المراحل الأولية من عملية التصميم المعماري. تبع التحديات التقليدية في التصميم غالباً من صعوبة تقييم المفاهيم أو الأفكار في بداياتها، وهو ما يؤدي إلى تعديلات مكلفة لاحقاً. يعرض البحث إطاراً منهجياً متكاملاً يجمع بين التصميم القائم على التصور والتصميم المبني على الأدلة، بهدف معالجة هذه الإشكاليات. ويفك الإطار المقترن على مصفوفة شاملة للعوامل المؤثرة لضمان إنتاج حلول تصميمية مبتكرة وقابلة للتنفيذ، تحقق توازناً مدروساً بين الإبداع والوظيفة والبيئة. من خلال الدمج بين الإبداع المفاهيمي والتقييم القائم على الأدلة، تسهم المنهجية في تقليل المخاطر التصميمية، كما تشي التعليم المعماري من خلال تعزيز التفكير النقدي والتأملي. إضافة إلى ذلك، تحفّز المنهجية المصممين والطلبة على التفكير الشمولي والمبدع، مع مراعاة الجوانب الوظيفية والاستدامة البيئية في آن واحد. كما تساهم في رفع الوعي بتطور المفهوم في مراحله الأولى، وتسليط الضوء على التحديات المحتملة وسبل موازنة الجدوى مقابل التنازلات التصميمية. وقد أجريت عملية تحقق تجريبية من خلال دراسات حالة واقعية وبيانات كمية، أظهرت نتائج محسنة في مخرجات التصميم والفائدة التعليمية.

الكلمات المفتاحية: التصور المعماري، الشكل مقابل الوظيفة، قيمة الفكر المعمارية، الممارسة التأملية، التفكير التصميمي الشامل.